香港青少年數學精英選拔賽

The Hong Kong Mathematical High Achievers Selection Contest

2007 - 2008

SUGGESTED SOLUTION

No.	Answer	Explanation				
1.	120	$\Theta 143 = 11 \times 13$				
		the number of reduced proper fractions				
		= 143 - 13 - 11 + 1 = 120				
2.	1	$(2008^2 - 2008 - 6)(2008^2 + 2 \times 2008 - 3)$				
	2009	$2005 \times 2007 \times 2009 \times 2010 \times 2011$				
		$= \frac{(2008-3)(2008+2)(2008+3)(2008-1)}{(2008-1)}$				
		$- 2005 \times 2007 \times 2009 \times 2010 \times 2011$				
		= <u>1</u>				
		2009				
3.	c > d > b > a	$\frac{b}{a} = \frac{15^{25}}{3^{50}} = \frac{15^{25}}{9^{25}} > 1; \frac{d}{b} = \frac{1024^{10}}{15^{25}} = \frac{16^{25}}{15^{25}} > 1; \frac{c}{d} = \frac{33^{20}}{1024^{10}} = \frac{33^{20}}{32^{20}} > 1;$				
4	18 and 16	Let x and y be the length and breadth respectively.				
		2(x+y) = xy				
		$2\mathbf{x} = \mathbf{x}\mathbf{y} - 2\mathbf{y}$				
		$x = \frac{2x}{2} = 2 + \frac{4}{2}$ Therefore 4 must be divisible by x = 2				
		$y = \frac{1}{x-2} = 2 + \frac{1}{x-2}$. Therefore 4 must be divisible by $x = 2$.				
		Thus $x - 2$ can be 1, 2 or 4. Hence, the corresponding values of y are 6, 4				
		or 3.				
		From the above results, the possible areas of the rectangles are 18 and 16.				
5	80°	Let $\angle BAE = x$				
		Then $\angle FAD = x$ and $\angle ABE = \frac{180^\circ - x}{1000}$				
		2				
		Since $AD//BC$, $\angle ABE + \angle BAE + \angle EAF + \angle FAD = 180^{\circ}$				
		$\frac{180^{\circ} - x}{2} + x + 60^{\circ} + x = 180^{\circ}, \therefore x = 20^{\circ}$				
		Therefore $\angle ABE = 80^{\circ}$				
6	AB can be	Let $AB = BC = x$ and $AC = y$				
	16cm, 20cm,	Case(i) $AB + BD = 24$ and $AC + CD = 30$				
	14cm or 22cm	$x + \frac{x}{24}$ and $x + \frac{x}{20}$				
		$x + \frac{1}{2} = 24$ and $y + \frac{1}{2} = 30$				
		\therefore x = 16, AB = 16cm				
		Case(ii) $AB + BD = 30$ and $AC + CD = 24$				
		$x + \frac{x}{2} = 30$ and $y + \frac{x}{2} = 24$				
		\therefore x = 20, AB = 20cm				
		Also, consider $AC = BC$. Similarly, we have $AB = 14$ cm or 22cm.				

7	$-\frac{1}{6}$	$a_1 = -\frac{1}{6}, \ a_2 = 7, \ a_3 = \frac{6}{7}, \ a_4 = -\frac{1}{6}, \dots$			
		The sequence will be repeated every 3 terms.			
		When 2008 is divided by 3, the remainder is 1.			
		$a_{a} = a_{a} = -\frac{1}{2}$			
		6			
8	27.5	Extend AD and BC to meet at the point E			
		Since $\angle A = 90^{\circ}$ and $\angle B = 45^{\circ}$, so $\angle E = 45^{\circ}$			
		Therefore, $\triangle ABE$ and $\triangle CDE$ are isosceles.			
		So $AE = 8$ and $CE = 3$			
		: the area of the convex polygon = $\frac{1}{2} \times 8 \times 8 - \frac{1}{2} \times 3 \times 3 = 27.5$			
9	23	Since Mr Chan is an adult, so he must be born on $\overline{19xy}$.			
		This year is 2008, so $2008 - \overline{19xy} = 1 + 9 + x + y$			
		2008 - 1900 - 10x - y = 1 + 9 + x + y			
		98 = 11x + 2y			
		$x = 8 + \frac{10 - 2y}{11}$, $\therefore y = 5$ and $x = 8$			
		Mr Chan was born on 1985 and he is 23 years old now.			
10	446	$\frac{2}{7} = 0.285714$			
		The sum of 2, 8, 5, 7, 1 and 4 is 27			
		When 2008 is divided by 27, the quotient is 74 and the remainder is			
		10.			
		: the value of n is $74 \times 6 + 2 = 446$.			
11	26	Put a = $\sqrt{7} + \sqrt{6}$, b = $\sqrt{7} - \sqrt{6}$			
		Then $ab = 1$ and $a + b = 2\sqrt{7}$			
		From $(a + b)^2 = a^2 + 2ab + b^2$			
		We have: $(\sqrt{7} + \sqrt{6})^2 = a^2 = (2\sqrt{7})^2 - 2 - b^2 = 26 - b^2$			
		0 < 0 < 1			
12	5	Put r = $\sqrt{5} - 2$			
		$r^{2} + 2r + 2\sqrt{5} = (\sqrt{5} - 2)^{2} + 2(\sqrt{5} - 2) + 2\sqrt{5} = 5$			
13	$\frac{\sqrt{2}}{2} (\text{or } \frac{1}{\sqrt{2}})$				
		N T Soft			
		C Decourse M and N are mid points of AD and CD respectively and ADMC			
		Because M and N are mid-points of AB and CD respectively and $\triangle DMC$			
		and \triangle AND are isosceles triangles, with is perpendicular to DC and AB.			

		Let M, N be midpoints of AB and CD respectively. If P, Q are other points on these segments, Δ PQM and Δ QNM are right-angled triangles. Thus, PQ > QM and QM > MN, MN is the shortest distance between the two edges. Consider Δ BMN, which is a right-angled triangle, $MN^2 = BN^2 - BM^2 = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2$				
14	216	Length 3 3 3 3 3 3 2 2 2 2 1	Breadth 3 3 2 2 1 2 1 2 1 1 1	Height 3 2 1 2 1 1 2 1 1 1 1 1 1	No. of rectangular blocks	
15	15.5 (cm ²)	$A = \begin{bmatrix} a \\ b \\ b \\ c \\ c$				

16	5	E and F are chosen such that AF and CE are perpendicular to CB and AB				
		respectively. $\therefore \Delta AFB \sim \Delta CEB$				
		$FB AB \rightarrow \frac{1}{2}CB AB \rightarrow \frac{1}{2}CB a$				
		$\cdots \overline{EB} \stackrel{=}{\longrightarrow} \overline{CB} \stackrel{\longrightarrow}{\longrightarrow} \overline{EB} \stackrel{=}{\longrightarrow} \overline{CB} \stackrel{\longrightarrow}{\rightarrow} \frac{1}{2}(a-3) \stackrel{=}{\longrightarrow} \overline{CB}$				
		\Rightarrow (CB) ² = a(a - 3)				
		$\triangle BCE$ is a right-angled triangle, $\square 3 \square C$ i.e.				
		$(CB)^{2} = 3^{2} + \left(\frac{a-3}{2}\right)^{2}$ $a^{2} - 2a - 15 = 0$				
		a = 5 or a = -3(rejected)				
17	5	Answer: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				
18	A wins 4 times	The corresponding outcomes are:				
	or 1 time.	$(1) (A, B) = (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}))$				
		or				
		$(2) (A, B) = (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B}), (\mathfrak{B}, \mathfrak{B})$				

乙部 Part B

No.	Answer	Explanation	
19	1504	Note that :	
		1. $2k+1 = (k+1)^2 - k^2$ (k = 1,2,3)	
		2. $4k = (k+1)^2 - (k-1)^2$ $(k = 2,3,4)$	
		3. $a^2 - b^2 = (a+b)(a-b)$ which is an odd number or a multiple of 4 larger than 4.	
	Hence, the 'wise integers' are odd numbers larger than 1 and multiples of 4 lar		
		than 4.	
		∴ The 'wise integers' are 3,5,7,8,9,11,12,13,15,16,17,19,20,	
		i.e. there are $(\frac{3}{4} \times 2008 - 2 =)1504$ wise integers.	

20 48 cm² Join *AF* [This is the crucial construction line. With it, the computation is no more hard!]
Note that

$$\frac{x}{2} = \frac{x + y + 6}{6}, \frac{y}{6} = \frac{x + y + 2}{10}.$$
Hence we have
 $4x - 2y = 12, 6x - 4y = -12.$
Solving the equations, we obtain
 $x = 18, y = 30.$
Hence, $x + y = 48.$
21 140 Let $x = AD, y = AE, z = BC$ and $w = FC$. Let $\theta = \angle BFD$.
Note that ΔFBD is similar to ΔECF . Therefore, we have

$$\frac{EC}{FB} = \frac{CF}{BD} = \frac{FE}{DF}$$

$$\frac{z - y}{z - w} = \frac{w}{z - x} = \frac{y}{x}.$$
Hence, $w = \frac{(z - x)y}{x}$ and $\frac{z - y}{z - \frac{(z - x)y}{x}} = \frac{x}{x}.$
Solving *z* in terms of *x* and *y*, we have $z = \frac{xy(x + y)}{x^2 - xy + y^2}.$
Since $x = 91$ and $y = 65$, we have $BC = z = 140.$

顧問:蕭文強教授(香港大學)、吳端偉博士(香港大學) 擬題委員會: 香港數理教育學會數學組委員:李文生先生、馮德華老師、徐崑玉老師、徐鳳鳴老師